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Abstract

Numerical procedures for the estimation of the retention are compared, considering the simultaneous programming of
temperature and column head pressure, embracing issues from the mathematical basis to the practical aspects in the

simulation of the chromatographic process by computer.
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1. Introduction

The equation of peak motion in programmed-
pressure and -temperature gas chromatography
(PPTGC) may be written in terms of four well
defined and accessible functions [1]:
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where the variables of the equation (z,7) are the axial
position of the peak in the column and the absolute
temperature. The parameter L is the length of the
column. The function f'(T) is the first derivative of
the relationship between time and temperature, 7=
ftt), that describes the temperature program selected
by the chromatographer. This relationship is an
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external restraint imposed on the system, fixing how
the temperature will evolve in time. In the most
general situation f* may be a function of T. In the
particular case of linear temperature programs is a
parameter, the heating rate r,. Another restraint is
the head pressure program p,(t) or P(t) (where P=p,/
p,). It can also be expressed as a function of T [1],
P=P(T). The outlet pressure of the column p, is
usually a constant. The pressure program P(T)
cannot always be selected voluntarily. In chromato-
graphs without pressure programming capabilities,
p,(T) is a characteristic function of the flow control
system [1]. Therefore, as a matter of fact, all
chromatographs have some intrinsic sort of pressure
programming.

In the denominator of Eq. (1), the Q(z,T) function
is the local velocity factor. This is the ratio between
the average carrier gas velocity along the column at
temperature 7, #(T), and the local velocity of the
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carrier gas at position z, u(z,T) L Q@ T)=u(T)!
u(z,T). If the isothermal motion of the carrier gas is
described by the differential form of the Hagen-
Poiseulle equation (in the case of capillary columns)
or by D’Arcy’s equation (in packed columns), then:

u(z) = —‘Ii@‘ )
n dz

where 7 is the viscosity of the gas and p is the
absolute local pressure at the z position. B can be
assumed to be a constant of the system [1]. From Eq.
(2) we derive the following expression for Q (see,
for example [2]):
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The current theory of programmed temperature
assimilates the chromatographic process to a se-
quence of consecutive isothermal states, so P will be
the pressure program P(7) and Q will depend
definitely as Q(z,T). This basic hypothesis of the
theory also implies that the process is assumed to be
a summation of sequential steady-state flows at
successive temperatures, with an existing thermal
equilibrium at each point.

The third function present in the denominator of
Eq. (1) is the isothermal gas hold-up time ¢,,(7) .
Resembling Q, t,,(T) is also a function of the
pressure program P(7T), and, in the same way, from
Eq. (2) we can derive the expression for this function

[1]:
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where C, is another constant of the system.

Finally, the fourth function present in the de-
nominator of Eq. (1) is the capacity factor k(7)
describing the thermodynamics of the process:

'The local velocity of the carrier gas u, as usually is indicated in
GC, is the cross-sectional average of the radial profile of the axial
velocity v_ in the column: ¥ = <v_>; see, for example, Ref.

[3].
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The standard partial molar free energy of solution
AG® is a function of T and p. The dependence on
pressure can be neglected in chromatographic con-
ditions. The phase ratio of the column 8 may be
considered a constant if the thermal expansion of
column materials is neglected too, a hypothesis that
was necessary for accepting B and C, as constants.

Eq. (1) is the differential equation governing the
motion of the band. This motion is the resultant from
the combination of a fluid dynamic effect, the
transportation of the band by means of the gas
stream, and the thermodynamics of interaction be-
tween the solute and the stationary phase. As shown,
the fluid dynamics of the chromatographic process
are defined by the functions Q(z,T) and ¢,,(T); both
depending on the pressure program and the tempera-
ture program. The differential equation can be solved
by direct variable separation only when P is con-
stant, as a consequence of the function Q depending
simultaneously on z and 7 if P changes with
temperature. When using the constant inlet pressure
mode of flow control, the integration of the equation
after direct variable separation leads to the well
known relationship for linear temperature programs
[4}:
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where T, and T are the initial and the retention
temperature, respectively. Otherwise, by changing to
the variable ¢, the equivalent expression is [5]:
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where 2, is the retention time of the solute.
Historically, in conditions pertaining variable head
pressure with temperature, rigorous retention estima-
tion initiated from general Eq. (1) has been carried
out avoiding the mathematical difficulty of the
simultaneous dependence of Q on z and 7 by means
of a defined numerical procedure of calculation. The
classical example is the strict treatment developed by
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Dal Nogare and Langlois [6], specifically for the
constant mass flow mode of carrier gas control °,
although it has general applicability. We shall iden-
tify the algorithm with the general expression [6]:

L
_ [ 1 +k(T)]dz
R — U(Z,T) (8)
0

In this algorithm the local velocity u(z,7) has to be
calculated at each incremented value of z. A stepwise
numerical integration of Eq. (8) begins when z=0
and T=T,, then the local velocity can be calculated
at the initial position by means of the general
equation:

u(z,T) = )]

L
0@ (T)

Incrementing z in dz leads to an incremented
elapsed time (from injection) given by the stepwise
integration of Eq. (8) (determining k¥ by using the
initial temperature in Eq. (5) for the first cycle of
calculation):

_ [1+ &(T)] dz (10)
u(z,T)

The sum is performed up to the actual position z.
Now the effective temperature at the incremented z
can be obtained from the temperature program 7 =
ft). With this temperature another cycle of calcula-
tion is possible: incrementing z, determining u and k
from Egs. (5,9), actual ¢ from Eq. (10) and actual T
from f{z). The cycle is repeated until the incremented
z reaches the value of L, as indicated in Eq. (8).
Then the time elapsed at this point is the retention
time ¢, and 7=f(ry) is the retention temperature T.
These are the unknown parameters, the object of the
calculation. If desired, the procedure allows listing T
as a function of z, or vice versa. Therefore, it makes
the solution of Eq. (1) attainable, which is a curve in
the plane z-T or z—t (the integral curve). Notwith-
standing, the chromatographic interest is only cen-

’In current chromatographic conditions, this mode of flow control
behaves like a special case of linear head pressure programming

[71.

tred on obtaining . Fig. 1 shows the integral curves
belonging to the solute n-dodecane, calculated
through the described procedure with conditions
indicated in Table 1. The influence of the tempera-
ture program parameter on the solution of Eq. (1) is
illustrated — in other words, the influence of the
T =f(t) function on the movement of the band.

A recent example of programmed temperature
retention simulation, involving the described step-
wise calculation of the local velocity, is the work by
Snijders et al. [8], which uses a procedure essentially
equivalent to that followed in [6], but applied to
constant inlet pressure.

The objective of the present work is to demon-
strate the validity of Eqgs. (6,7) under variable P(T)
flow conditions, or more generally, the validity of the

tmin (ry=10)
f T T T T T T 1
0.00 1.62 3.23 485 6.46 B8.08 9.69 11.30

0.00 108 2.15 3.23 4.31 539 6.46 7.54
L i L i 1 1 1 J

tmin (rp=15)

Fig. 1. Peak position as a function of column temperature (reduced
variables) or time (min). The integral curves belong to n-dodecane
in the chromatographic conditions indicated in Table 1 and Ref.
[7]. These were calculated through the classical algorithm of Ref.
[6]. In ]ipfarrprograms time is related to the reduced temperature
by: ¢ ’T(To 1).
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Table 1
Comparison of calculated retention times using constant mass flow mode of carrier gas control
Solute 1 2 3
t,, (min) t, (min) f,5QIL dz

Algorithm from Ref. [6] Algorithm from Ref. [6]

n-Octane 4.310
p-Xylene 5.090
1,3,5-Trimethylbenzene 6.430
1-Undecene 8.320
Naphthalene 9.400
n-Dodecane 9.820
n-Tetradecane 12.350
n-Hexadecane 14.830

4.303 09974
5.084 0.9968
6.424 0.9960
8.313 0.9955
9.391 0.9950
9.819 0.9952
12.356 0.9951
14.860 0.9957

Column [: retention times estimated through Eq. (11).

Column 2: results calculated according to the classical algorithm [6].

Column 3: numerical integration of Q/L along z applying the same procedure as for column 2.
Temperature program is a single ramp with r.=10°C/min., 7,=50°C, L =30 m (reported by the supplier), p, =765 Torr, initial p,= 1277

Torr; applied P(T), t,,(T) and k(T) functions from [7].

following retention expression for programmed-pres-
sure and -temperature gas chromatography:

Tx
‘f aT
“wam0m+ﬂn1 (an

The consequences of chromatographic interest, the
advantages and limitations of this relationship, with
respect to the procedure identified by Eq. (8), will be
discussed.

2. Demonstration

Generally, Eq. (1) can be rearranged to:

0@.T) 1

- T= 2

L ST rmnmi e =0 42
which fits the generic form of:

M(x,y) dx + N(x,y) dy = 0 (13)

The necessary and sufficient condition allowing Eq.
(13) to be a exact differential is:

oM oN

ay e 9

The general solution of the exact equation is (see, for
example [9,10]):

fM8x+f N—ﬂgﬂ dy=C (15)

where C is an integration constant.
In our specific case: dx=dz, dy=dT, M(,T)=
0@ T)Y/L, and

1
T (M, (D[ + KT))

NT)=

Eq. (12) is not in general an exact differential, since:

ON(T) oM(T)
az oT

We want to determine whether Eq. (12) becomes a
exact equation when z—L, considering that we are
only interested in the particular solution with bound-
ary condition: (z=L, T=Ty). Out of the limits 0=
z=L the equation has no physical meaning. Invariab-
ly, the integration begins at z=0, this being a
condition sine qua non. It should be noted that the
initiation of the integration at a point different to
z=0 has not any physical meaning either.

As derivation and integration are inverse opera-
tions, we know that:

A(Jus)

6 —_—
oM 9z
K aT (16)
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In the limit when z—L, the primitive of M in the
numerator of the right member of Eq. (16) is equal
to: j(T)={3[P°(T)— 1J}{{2[P°(T)— 1]}. Then, its par-
tial derivative with respect to z is zero, and from Eq.
(16) we see that in the proximity of z=L it is
verified that (0M/dT)=0. Therefore, the condition
of Eq. (14) is satisfied when z—L, the equation of
peak motion becoming a exact equation. Therefore,
for the particular solution of chromatographic inter-
est, Eq. (15) yields:

L
Tx d fMaz
0 -—
T dT=0 17)

L
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The integral fMdz can be solved analytically by

substitution, with a result equal to unity.

Thus, Eq. (17) is reduced to Eq. (11), and our
demonstration is concluded.

The statement on the validity of Eq. (11) for
variable P(T) can also be demonstrated with a rather
more limited formalism. The sufficient condition for
Eq. (13) to be an exact differential is the existence of
a function V such that: oV/dx=M and oV/dy=N
(see, for example, Ref. [10]). The existence of V for
the equation of peak motion, Eq. (12), can be proven
when z—>L.

3. Consequences and corroboration

Numerical corroboration on the validity of Eq.
(11) with variable P(T) chromatographic conditions
can be carried out from its consequences. Some of
these are of fundamental importance with respect to
the retention numerical simulation in programmed-
pressure and -temperature gas chromatography.

3.1. Retention simulations through the algorithm in
Eq. (8) and by the numerical integration of Eq.
(11) are equivalent

The statement is supported by the fact that both
procedures concern the same basic chromatographic
hypothesis relative to Eq. (1), not involving addition-
al mathematical assumptions, approximations or

simplifications, one with respect to the other, as
demonstrated in the preceding section. Corroboration
of this statement can be easily achieved by compar-
ing numerical results obtained through both pro-
cedures. These should arrive at the same values
under variable P(T) conditions. Table 1 shows the
calculated retention data for the constant mass flow
control mode, following the respective procedures.
The expressions of the applied functions and the
conditions in the calculations for each solute can be
found in Ref. [7]. One of the reasons why they do
not yield exactly the same values is the discrepancy
in the number of operations performed by the
computer. In the case of Eq. (11) less operations
must be performed. However, this would be a minor
contribution to the observed differences, taking into
account that machine round-up has a minimal inci-
dence in the numerical results. Furthermore, the
forms of the integrands in Egs. (8,11) are quite
dissimilar, generating different errors along the nu-
merical integration, even if the same integration
method is applied to both. Probably, the most
important contribution to the observed differences is
the existence of the additional parameter L in the
algorithm of Eq. (8), not present in Eq. (11). The
contribution of the error of L may be significant if
nominal values are entered into the calculation.
Besides, there might be inconsistency between mea-
sured values of L and gas hold-up time. It should be
noted that there is a functional interrelation between
them that should be fulfilled.

3.2. Parameter L is irrelevant for retention
estimation from t,,(T) and k(T)

L becomes irrelevant for the retention calculation
through Eq. (11), instead, for simulation by the
algorithm of Eq. (8) is a necessary input. Note that
the effect of the column’s length is already ac-
counted for by the function t,,(7). If Eq. (11) is
strictly applicable to variable P(T), then in these
conditions L should be irrelevant too. This fact was
corroborated by present authors running programs
according to Eq. (11) for different P(T) functions
and comparing calculated retentions with the ex-
perimental values [7], concluding that the errors are
in the same order with respect to algorithms that
include L as a significant parameter.
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3.3. The following equality is verified:

L L

0@T)dz [ Q&T)
J i3 —J 3 az=1 (18)
0 0

The integral in the left member represents the sum
performed with algorithm of Eq. (8), a stepwise
numerical integration with simultaneous variation of
z and 7. The integral on the right is the analytical
one keeping T constant, which is equal to unity. This
statement derives directly from the demonstration of
Section 2 and the statement 1 from this section. Eq.
(18) represents a special property of the fluid dy-
namics of the GC system. It was first observed by
Said and Stenberg, as mentioned in Ref. [11] (p.
105). This relationship displays the reason why L
becomes irrelevant. Table 1 shows the calculated
values of the integral on the left, introducing the
respective sentences in the computer program used
for calculating the retention times and the integral
curves. The discrepancies with respect to unity show
clearly the errors associated with the numerical
integration and the introduction of L, as was men-
tioned previously.

There are some precedents in the literature con-
cerning the application of Eq. (6) or Eq. (7) to
chromatographic conditions pertaining to variable
P(T). For example, in the paper by Dose [12] the
reported t,,(7) function cannot be associated with a
constant head pressure condition [1].

4. Conclusions

The equation of peak motion only becomes an
exact equation when z—L, i.e. in the proximity of
the particular solution of chromatographic interest
(z=L), Eq. (15) being applicable only if the integra-
tion is performed along the whole domain of z.
Therefore, Eq. (11) would not yield correct resuits if
it was applied to an integration to intermediate

values of z. In other words, the strict mathematical
solution of Eq. (1) (i.e. relating z as a function of T
or 1) is not possible with this procedure. Neverthe-
less, the chromatographic interest is centred exclu-
sively on the value of r, or Ty, and not in obtaining
the integral curve T vs. z. Therefore, this could be
appreciated as a minor limitation of the procedure.
On the other hand, there is a neat advantage in not
needing to enter the value of the parameter L with its
intrinsic error. Furthermore, having few operations to
be done results in simpler and faster computer
programs, with a reduced amount of sentences. The
most outstanding characteristic of Eq. (11) is that it
can be written explicitly in terms of the pressure
program P(T), this being crucial for a simplified
treatment in PPTGC [7].
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